[[1 線形方程式の解法の選択]]&br; [[2 参考文献および参考書の記述]]&br; 線形方程式, &math(Ax=b); >>> 実非対称/複素非エルミート, &math(A\not=A^H); >>> 高速性重視 >>> 改良法: >>> Bi-CGSTAB 法 線形方程式, &math(Ax=b); >>> 実非対称/複素非エルミート, &math(A\not=A^H); >>> 高速性重視 >>> 改良法: >>> QMRCGSTAB(l) 法 #contents --------------------------------------------- *概要 [#sc08289e] *参考文献および参考書 [#faf0cbba] **原著論文 [#l705f8a4] [26] Henk A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing 1992; 13(2):631–644. [25] Charles H. Tong, A family of quasi-minimal residual methods for nonsymmetric linear systems, SIAM Journal on Scientific Computing 1994; 15(1):89–105. **教科書 [#h9dcb982] [2] Richard Barrett, Michael W. Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine and Henk A. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM: Philadelphia, PA, 1993.&br; P27–28 [14] Yousef Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM: Philadelphia, PA, 2003.&br; P231–234 [27] Henk A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press: New York, NY, 2003.&br; P133–138 [23] Masaaki Sugihara and Kazuo Murota, Theoretical Numerical Linear Algebra, Iwanami Press: Tokyo, 2009, (in Japanese).&br; P190–193 [29] 藤野 清次, 張 紹良, 反復法の数理 (応用数値計算ライブラリ) 朝倉書店, 1996.&br; P47–49